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Abstract

The controversy over whether the optical gap of a

polymer is increased or decreased by the electron-electron

interaction ,xf be ciaritied by studying the effect of the

screened Coulomb interaction on the correlation function of

the excited states. Since the competition between the

diagonal and off-diagonal parts of the electron interaction

depends on the screening, the screening becomes the decisive

factor in determining the dependence of the optical gap of

the electron interaction. Our theory shows that the

electron interaction with weak or usual screening increases

the optical gap, but if the screening is very strong, the

optical gap can be reduced by the electron interaction.

- 2 -



I. Introduction

Experimentally, one of the most prominent feature of the

conjugated polymer is the finite exciiation energy from the

ground state to tile lowest optically-allowed excited state,

t the cptcal gap. But, theoretically, how to understand

tile physical origin of the optical gap is one of tile most

controversial issues today in this field.There exists a sharp

dispute about the effect of the electron-electron interac-

tion on the optical gap. One school shows that the electron

interaction increases tile optical gaPAsome groups even think

that the main origin of the optical gap is the electron in-

teraction. {owever, the other school holds an opposite opinion

that the electron interaction should reduce the optical gap,

which is produced by the electron-phonon interaction. Their

discrepancy comes from the different descriptions for the

electron interaction. The former school takes the extended

Hubbard model to describe the electron interaction. Starting

from that model, many different theories including the per-

turbation [1], Gutzwiller variational [2], renormalization

/- 3-
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group 13], Monte Carlo simulation [41, valence bond [5-8],

configuration interaction [9], exact diagonalization[10] and

others have been used to investigate the effect of electron

interaction on the dimerization and optical gap. Although

their methods and approximations are different, all these

approaches reach the same result that the electron interac-

tion increases the dimerization and optical gap. However, the

latter school argues that the extended Hubbard model only

contains the site-charge repulsion U and V, m-ise the bond-

charge repulsion W. When W is added to the extended Hubbard

model, they find the dimerization and optical gap is reduced

[11]. Nevertheless, the former school is not convinced be-

cause the latter takes the extreme case with W = V and makes

only first-order perturbation [12-14]. Thus,whether the ele-

ctron interaction increases or decreases the optical gap be-

comes an open question.

It is not a puzzle that the conclusions of these two

schools are completely opposite; the reason is their model

Hamiltonians are different. The matter is to what extent

these models are suitable. Apparently,the key to settle this

-4-



dispute is to analyle the limitations of these models and

find a lbetter description for electron interaction in poly-

mer, We know that the parameters U and V in the extended Hu-

bbard model are the diagonal matrix elements of the Coulomb

interaction; and the bond-charge repulsion W, which is the

exchange term, is one of the off-diagonal elements.There are

also many other off-diagonal elements such as the site-bond

repulsion X etc.. It has been pointed by D.Campbell and his

co-workers that the parameters U,V,W,X Gz4V t be dialed at

will [10]. The ratios between these parameters should be de-

termined from the Coulomb interaction. On the other hand, as

is well known,t4ftt the Hubbard model is a good approximation

for those systems wh-ic-h bandwidths are narrow then the off-

diagonal elements are much smaller than the diagonal elemen-

ts -and tty can be neglected. But, the bandwidth of the con-

jugated polymer is wide and even larger than the electron

interaction. In such a case the off-diagonal elements are

not always negligible compar-ng to the diagonal partner, es-

pecially when the screening is strong. Then, the results ba-

sed on selecting some part of the interaction elements with

-5-



artific l values are questionable. Therefore, it will be

more reliable directly using screened Coulomb repulsion v(r)

c (i/r)exp(-1 r) to describe the electron interaction. In

the second quantized representation this interaction inclu-

des all diaqonal.and off-diagonal elements. And in this des-

cription, the ratios between all interaction parameters U,V,

WX etc. can be determined correctly, avoiding any artifici-

ality. This description is general, both the former model (

extended Hubbard ) and the latter model ( KSSH [11] ) are

different approximations of this interaction. So, it can be

expected that the resulots based on this interaction will

provide a satisfying answer to the above dispute.

Such screened Coulomb repulsion has been successfully

used to clear up the confusion about the effect of the elec-

tron interaction on the bond alternation of the polymer [15-

18]. The bond alternation is a property which is only asso-

ciated with the ground state of the polymer. But the optical

gap involves the excited states. In this paper we are going

to use the same interaction to study the effect of the elec-

tron interaction on the excited states and the optical gap

-6-



of tile polymer.

In the next section we fiat establish the integral equa-

tions for the correlation function of the excited states in

an interacting electron system and find the relation between

the optical gap and the correlation function of the excited

state. Then, in the third section, tile dependence of the

optical gap on the electron interaction will be obtained by

solving the integral equations numerically.In the discussion

of the results it tells how the controversy about the opti-

cal gap can be settled.
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I I - ''heo r t i cal t ramewo rk

Hy us;inq tLhe screened Coulomb repul.;ion to describe th e

elct (:trol interaction, the 1amil, toniali.of our :;y:;t em Ir-iads

H Ii. + H , + ( K12)", ( X, . X, a )2 (2.1)

_ 1_ d, d .s;: r :; the interaction between th ( -c t -on and

the w latz i,-f () the polymer,

i, V >, { -( /2Mu) V + X , V(x, -X, ) }, (2 2)

where V(x, -X, ) is the potential produced by the atom at X:

r
and exerti-iny on the electron at x. - The eiqent-values and

eiqen-..functions of H are r (k) and 1 1 1{, , is Lhe

electron interaction

Ho t = , v( r . ) (2.3)

v(r) (Uo/r)" exp(-13 r), (2.4)

-8-



where U', and t3 are the st renqt Ii and the sci eeiiq ac toI

oI the elect ron interact ion ill the polymer . "i'i 1 a;t t ri n Ill

(2. 1 ) i:; the elastic eieigy ) and K in the c:; a.t i: coi:;t ,dt .

'I'he optical (lap if; the threshold of In ilteiband opt 1c,11

absopt ion. Ii the systeut with electron ilitc:rct iolli fle OX -

cited state such as 2'A, can exist whitin the qap, hult it :i.

d i pole - f orbidden from the ]ground state, wit-i--h :;ymmet r y 1 s

1 A, The lowest many-body excited state in t hi s pap r h, a:;

t he symme t ry ' IF, ,whi ch i:; d i po I e-allowe!d, and t, he t r~an:; i t 10o1

f rom t le qrounda state to t his lowest- excited state produce.:;

t li_ -op tical gap ( 191

The (calcuidtion of the optic-al gap for a system with l i

intermediate electron interaction is an important but dif fi-

cult problem. The polymer has a wide bandwidth of about 10

eV, arid the electron interaction in the polymer is about 5

eV. It means that the electron interaction is neither weak

enough to use the perturbation nor able to be treated by the

strong-limit approximation. It is an intermediate case. The

-9-



var ious iie tlods nent ioned iII t he In~t roduc t i on 11;ive (?e4:- Soile(

jprn(rf-ss! t-ti-r thiis subluct, hut the(y are [lot. alb 1e to dea 11 Wi th

tne Coulomnb interaction- Meauiwi lIe, thef- e-xac(t Calculat io.IX.

iuue-!hods for: the optical (1ap1 tL~vf~fom the- t IiiV-

e.f fe(t .InI th i; paper We use;( thle Feenlb(r-(Ja!strIow var-il at i flflA

ie tz hod [2(0], wh iich can work for the Coln i b re puls;i on and

for ainy le-ngthi of the polymier: l chin - We are gjoing to (](er -

Pi He the (iepa-ncuences of the opt ical (1ap1 on ho tl the s t- rene jt

in(l thie crn qof- the e Iec tron in t-c et ion in the inte-

mevd i aOe req ion of. strengthi andA tor any s;creen ing. Then i t

(:,in he# quantitatively shown how the- electron interaction i n-

(: ea:esOr de(: reases the optical gaZp -

Following the Feenherg-Jastrow Ansatz [20], the wave

function of an interacting electron system is,-

ki (1,2,- N) = D(1,2,-- N) exp( X u,,) , (2.5)

where D(1,2,- N) is the Slater determinant consisting of

occupied states 0 ru, is the correlation factor deter-

- 10 -



mined by the variational principle. As is known, the first

part of the wave function (2.5) represents the individual

particle mode and the second part the collective mode [21,

22]. Actually, in momentum space the second part can be

written as

ij ul k C k kP

where C, is the Fourier transform of u(r) and 1) , the densi-

ty fluctuation, which depicts the pLasma in the case of

Coulomb repulsion or the zero sound in the case of .hort-

range repulsion. This many-body wave function (2.5) is a

functionaA of electron's occupation configuration. In the

half-filled case, the most interested states in our study

are- the ground state W (, 2, N) with full valence band

and empty conduction band and the lowest single-partic 41 ex-

cited state '4 , (i,2,.-- N) with one electron excited from the

valence band to the conduction band. Since the (cllective

mode is not excited in this excitation, 'P , and %V . have

same u,1  but different D. and D,, which possess rLvre

- 11 -



symmetries [23]. The optical transition is allowed betwecn

them and the optical gap E, is

E. E( . )) - j({q, ] ) (2.6)

The energy E((Y )) of the wave function ti, (2.5) is

E( ' }) <p I H I ' > / < P I ' > -

= > (I) ± J Jd 2[P(l) no),(I, 2)[P(2) - lzo
0CC.

dl1 .... J 2[Pk1 2) P(1)P(2)j](1 2) -1- , f d2P(,2)(K 3)

"'/" ~ d 2 (,3),) (V,,ii)
"S71 ( 2.7 )

where P(1, 2,- n) is the n-particle distribution function,

whLch satisfy the following integral equations [15]

P(IV) P(1iO) cxp[ d(A( 1()] (2.8)

P(1,2f) = P(1,210)explj jd(1,2'),(

- 12 -



where

Jd2u 12P( 1, 21 ')/P(L1I')

+I d2 /' d ,(,3[P(1,2,3j')/P(IjC) P F(2,3k')j, (2.10)

I(1. 21$ u: c'J d3(uj; + iui,) "(1, 2.3, )/P(,21()

3 d3 u,,4[ P(1, 2,3 4[')-P(I,2I (3, 43,)/P(1 2k') (2.11)

Since the density is not high, and there is no electron con-

densation under the screened repulsive interaction, the

mu- i-body correlation is much less effective than the two-

body correlation. Then,- the three- and four-particle distri-

bution functions can be expanded by the convolution approxi-

mation in terms of ,two-body correlation function [22], and

-t-he Eqs.(2.8) and (2.9) are closed. For the ground state

I , its density P,(I) and two-body distribution function

P,(1,2) can be gat directly by solving the combined integral

equations (2.8) and (2.9), which has been done in the pre-

vious work (15].

In order to get the optical gap from the Eq.(2.6), we

- 13 -



must first know the density P. (I) and two-particle distribu-

tion function P. (1,2) for the excited state. They can be ob-

tained in t:he following way. Defin-ig

P( 1)=P (1)-P, (1) and I-(1,2)=P (1,2) -P (1,2), (2.12)

which are the differences of the densities and correlation

functions between the excited state and ground state. Since

the system contains N electrons and tP e is an extented

single-particle excited state, both P(l) and P(l,2) are the

quantities w4--h the order of I/N - Keeping this in mind and

applying the Eqs.(2.8) and (2.9) to the excited state 'If

the equations for P(l) and P(1,2) can be derived:

P(ljO)__ __

F'(i1 ) P(11o) + o , (
SJ '4A(1il') (2.13)

+1 ,2 d3F(2,31 F') (2,3 ,) ,
P (1, 21) P(1, 2101) h 1 (1,21 '

P(1, 21) - P(1,210) o 6P(314')

+ 3fd4P(3, 41 ) b K (,- 21
bP(341 ' (2.14)

- 14 -



From t-h Eq. (2.6), the optical gap can be expressed in

terms off P(1) and P(l,2),

=d IA -- f d2[P(1,2)/2 ~ np (I ]v (1, 2)E, : 2A + - If}

S____- , dI ,mi'(1,2)(7V,,,, 2

/1 P 1. ],p :2, 1)J dl d2 J d3(V I It) (V ] dT(y' 1Y 2(1 - .,)

5P(1,2 3)_____,% ]} (2.15)

where Q is the volume of the cell and n, the average den-

sity, 'rom this expression it can be seen thet, although

P(1) and P(1,2) are infinitesimal, their contribution to the

optical gap is finite. 4-il the right side of Eq.(2.15),the

first term 2A is the dimerization gap, the rest are the

effect of the electron interaction on the excitation.

Thus, the core of our theory is to calculate P(1) and

P(1,2) by solving the integral equations (2.13) and (2.14),

from which the density and the correlation function of the

excited state can be obtained. Substituting the obtained

- 15 -



P(1) and P(1,2) into the Eq.(2.15), we can get the optical

gap.

III. Results and conclusion

Following the formulism established in the last section,

the optical gap with the electron interaction can be calcu-

lated step by step.

First, t deal with the band without the electron interac-

tion. For the sake of simplicity, a periodical square well

potenthil is taken as the electron-lattice interaction,which

gives the band width 4t0 = 12eV and the non-interacting di-

merization gap E,° = 1.4eV. With this band, the non-intera-

- 16 -



cting density P(10) and P(1I0) as well as the two-body di ;-

tribution function P(1,210) and P(1,210) can be got strai-

ghtforwardly.

Next, using the obtained P(I10) and P(1,210) as the ini-

tial condition to solve the integral equations (2.8) and

(2.9), we can get the density P( I I ) and the two-body dis-

tribution function P(1,21 ) under the electron interac-

tion. Substituting P(11 ) and P(I,21j ) into b-he Eqs.(2.13,

and (2.14),and using P(l0) and P(1,2J0) as the initial con-

dition, P(l) and P(1,2). can be obtained by numerically sol-

ving the Eqs.(2.13) and (2.14).

Finally, substituting all the obtained P(l), P(1,2) and

P(1), P(1,2) into the Eq.(2.15), we get the optical gap.

In our theory, the essential quantity is P(1,2), which

reflects the electron correlation in the excited state. The

feature of P(1,2) is shown in-t-he Fig.1 " rently

-appe,&" the 2k, oscillation, which is the characteristic of

the correlation function. Notice that P(1,2) itself is not

- 17 -



the two-body correlation function of the excited state, as

is defined in t4e Eq.(2.12)) it is the difference of the -wo

-particle distribution functions between the excited state

and ground state. So, besides the behavior of 2k, oscilla-

tion, the shape of the Fig.1 looks quite different from the

two-body correlation function of the ground state, which was

shown ;n t-ht Fig.2 of Ref.15.

The dependences of the optical gap E, ( in the unit of

E, -- 1.4 eV ) on both the interaction strength U. ( in the

unit of t 0 = 3eV) and the screening factor t3 are shown in

te Fig, 2. Each curve in t-he--*4.2 has a fixed screening

factor 3 From these curves, it can be seen that the weak

screening and the strong screening have qualitatively diffe-

rent effects of the electron interaction on the optical gap.

In the case of the weak and usual screening, the electron

interaction increases the optical gap; the weaker is the

screening, the larger is the increase. But, if the screening

is very strong (g > 3 ), the optical gap will be rtducea by

the electron interaction.

-18-
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Based on these results, the dispute about the effect of

the electron interaction on the optical gap can be clari-

fied. As ik has been mentioned in the Introduction, 4_- t the

ratios between the interaction parameters U, V, W, X can not

be assigned arbitrarily. The merit of using the screened

Coulomb repulsion to describe the electron interaction is

tnat it can correctly bring about the ratios. With our band

and the Wannier function it is straightforward to calculate)

the ratios of the off-diagonal elements to the diagonal

ones. These ratios depend on the screening, their values are

given in the f-vT ,g -table wher--i-t shows X is negative,

Painelli and Girlando predicted 4-t and tol-ked its meaning

[241. Combining this table and .-he Fig.2, the controversy is

easy to--be settled. From the table it is seen that, if the

screening is small, the off-diagonal elements W and X are

much smaller than the diagonal ones, and they can be negle-

cted. So in this case, the electron interaction can be des-

cribed by the extended Hubbard model. At the same time the

Fig.2 shows that the optical gap is increased by the elec-

tron interaction if the screening is weak. It is just the

- 19 -



result ge-t by the former school. The table also shows when

the screening increases, the ratios of W/V and IXI/V rapidly

increase. If the screening becomes very strong, the off-dia-

gonal terms can be big enough to compete with the diagonal

ones, then the bond-charge repulsion W and the other off-

diagonal elements should be considered. Meanwhile, -tte Fig.2

indicates that the electron interaction will suppress the

optical gap if the screening is strong_,±--i---ha the latter

school claimed. Thus, our theory discloses the origin of the

conflicting conclusions between these two schools. Now it

becomes clear that each side of the dispute has their own

limitation: the former is valid in the weak or usual scre-n-

ing, whereas the latter yalid in strong screening.

t3 1 3 5 47

W/V 0,02 ij 0.10 0.26 .h 0.43

X/V -0.06 -0.18 , -0.45 . -0.77

- 20 -



Here, we see the behavior of the optical gap is quite

similar to that of the dimerization of the polymer, although

the optical gap is detenined by the excitation of the ol))Iy-

mer, whereas the dimerization is onl related to the ground

state. For the dimerization, it has been f-i-guCd--O+It that

the electron interaction- initially enhances the dimerization

if the screening is weak; but if the screening is stronq

enough ( , > 1.5 ), the electron interaction will suppress

the dimerization [15]. For the optical gap, the difference

is that it requires even stronger screening, I 3, only

then fthe optical gap w4- be suppressed by the electron in-

teract ion.

Summa4.y our conclusion is that the effect of the elec-

tron interaction on the optical gap depends on the screen-

ing: for weak and usual screening, the electron interaction

increases the optical gap, and the increase can be so large

that the electron interaction becomes the main origin of the

optical gapf contrzaT44-y, for very strong screening, the ele-

ctron interaction decreases the optical gap, and the optical

- 21 -



gap is mainly produced by the electron-phonon interact ion.
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Caption of Figures

Fiq.I The cur-ve of N.P(1,2) with X, 0-

Fig.2 The dependence of the optical gap E,, on the

interactlion strength U,, with different screening' t3



N )( 1, 23

0.2

0

0 wi____ _____2



2.0(

C1.0 2.0


